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Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks,
but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of
infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We
find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high
endemic levels in homogeneous networks with the same average degree.
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In a series of influential papers, Pastor-Satorras and
Vespignani �PV� �1–3� analyzed how the network structure
can affect the key outcomes of the classical susceptible-
infective-susceptible �SIS� epidemiological model �4�. As
originally noticed in 1927 by Kermack and McKendrick for
the susceptible-infective-recovered �SIR� model, “In general
a threshold density of population is found to exist, which
depends upon the infectivity, recovery and death rates pecu-
liar to epidemic. No epidemic can occur if the population
density is below this threshold value” �5�. The existence of
such a nonzero epidemic threshold value in the SIR �and
SIS� models is a milestone of epidemiological thinking and
any evidence that could contradict it would receive a great
deal of attention. This is exactly what happened to PV’s
works. They have in fact shown that when implemented over
realistic, scale-free networks �SFNs� the SIS process has un-
expected dynamical properties, because the nonzero epi-
demic threshold does no longer exist as the network size
tends to infinity. In other words, the strong heterogeneous
nature of SFNs crucially enhances the spreading ability of
the epidemic agent in comparison to what happens in homo-
geneous networks �HNs�. As sharply summarized by PV,
“This implies that SFNs are prone to the spreading and the
persistence of infections whatever spreading rate the epi-
demic agents might possess” �2�. A striking conclusion that
has shattering consequences on the way we usually study the
invasion and persistence of pathogens in a variety of con-
texts, ranging from bacterial infections in humans to com-
puter viruses in the Internet. The result is so simple and clear
to claim for very general statements such as “SFNs �are� the
ideal media for the propagation of infections, bugs, or unso-
licited information. �. . .� SFNs have the peculiar property of
being prone to the spreading of infections” �6�. The risk of
such generalizations is to leave the reader with the impres-
sion that “SFNs are completely prone to epidemic spreading
allowing the onset of large epidemics whatever the spreading
rate of infection” �7�. Recent studies have shown that, when
more realistic aspects of the infection process are accounted
for, an epidemic threshold reemerges in SFNs. In addition to
the finite size of the network �8�, such features include, e.g.,
connectivity-dependent transmission rates �9� or degree-

dependent deactivation of links �10�. Here we want to make
the caveat that in a number of significant epidemic processes
different from the standard SIS model, not only an epidemic
threshold reappears even in theoretical SFNs of infinite size
but, more important, SFNs can be much less efficient than
HNs in favoring the disease spread. In particular, we show
that this happens in cases where the mean-field epidemio-
logical model exhibits a saddle-node bifurcation, namely,
when the disease can survive and establish at high endemic
levels in populations that it will be unable to invade from
zero �11�. Saddle-node bifurcations emerge in models of im-
portant infectious diseases such as hepatitis B �12�, tubercu-
losis �13�, or HIV �14�. The prototypical mechanisms that
lead to saddle-node bifurcations are nonconstant transmis-
sion rates �15�, nonconstant recovery rates �16�, or both of
the above �17�. Departures from the traditional SIS model
are relevant not only to the transmission of human diseases
but also when the “infectious material” �18� being exchanged
is of intellectual �19�, commercial �20,21�, or social �22� na-
ture.

We consider the population as a network composed of N
individuals �nodes�. The ith node has degree ki, i.e., it is
connected by 0�kmin�ki�kmax edges to other nodes. At
any time instant t, every node i is either susceptible or infec-
tive. During the time interval �, an infected node can return
susceptible with probability ��, while a susceptible node can
become infected with probability �Gi�. The quantity � is the
disease transmission rate, whereas the function Gi �detailed
below� accounts for the number of infected neighbors of
node i. The state of all nodes is updated synchronously with
time step �. There are two main generalizations of the tradi-
tional SIS model in the family of contact processes studied
here. The force of infection �23� is nonlinear, as the trans-
mission rate takes the form

� = ��t� = �0 + �1y�t�, �0 � 0,�1 � 0,

where 0�y�t��1 represents the current disease prevalence,
i.e., the fraction of infected individuals in the network at time
t. By varying the values attributed to the parameters charac-
terizing the state-independent ��0� and the state-dependent
��1y� component of the transmission rate �, a wide spectrum
of epidemic processes can be described, from the standard
SIS model ��1=0� to some marketing models �20� for
product diffusion ��0=0�. The function Gi is assumed to
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increase, yet saturate, with the number Ii of infectives
among the neighbors of node i, i.e., Gi=min�Ii ,M� where
M � �1,2 , . . . ,kmax� is the saturation level. A value M =1 is
adopted in all the network studies implementing the classical
SIS model we are aware of. Practically, setting M to unity is
equivalent to assuming that the chance for a susceptible node
of being infected does not further increases if more than one
of its neighbors are carrying the virus.This is quite a typical
situation in the word-of-mouth spread of information and
rumors or in highly pathogenic diseases.

The spread of every epidemic process depends very much
on the network structure. Consistently with �1–3�, we com-
pare the spread of the above process in random HNs and
SFNs. We constructed our HN by linking pairs of randomly
selected nodes, until all of them have exactly the same num-

ber k̄ of connections, thus the resulting degree distribution pk

is spiky �pk̄=1, and pk=0 for all k� k̄�. Other random net-
works that have been used in the literature can fairly be
considered as homogeneous in their connectivity properties.
They include the Erdős-Rényi network �24� and the Watts-
Strogatz “small-world” network �25�, in particular, with re-
wiring probability equal to 1 �1,2�. We anticipate that all the
results presented below are qualitatively identical for all the
above mentioned types of random homogeneous networks
and, moreover, largely independent of the numerical value

assigned to the average degree k̄. Letting �→0, the dynam-
ics of the disease prevalence y in HNs can be described by
the following mean-field model:

ẏ = − �y + ��0 + �1y��1 − y�gk̄,M�y� , �1�

where

gk,M�y� = �
I=0

k

min�I,M��k

I
	yI�1 − y�k−I �2�

�see Fig. 1� is the expected number of infectives �saturated
to M� among the neighbors of any node, because
� k

I �yI�1−y�k−I= P�I� is the probability that a degree k node
has exactly I infected neighbors. Note that gk,M�0�=0 and
gk,M� �0�=k, i.e., the functions gk,M�y� are equivalent up to the
first derivative for all values of M if y→0. In the absence of
saturation �M =k�, gk,k�y�=ky is the standard contagion term
of the SIS model. Here we focus on the effects of low satu-
ration values. In the limit case of M =1, Eq. �2� reads
gk,1�y�=1− �1−y�k and represents the probability that a node
has at least one infected neighbor.

The analysis of the mean-field model �1� reveals that a
saddle-node bifurcation is possible in the family of epidemic
processes under study. The trivial equilibrium y=0 exists
for all parameter values, but it is stable if and only if

�0��̄0
HN=� / k̄ �easy to prove via linearization�. In contrast,

the nontrivial equilibria branch Y =Y��0� is implicitly de-
fined by the condition

�0 =
�Y − �1Y�1 − Y�gk̄,M�Y�

�1 − Y�gk̄,M�Y�

and it is such that �a� Y →0 as �0→ �̄0
HN and �b� Y →1 as

�0→	. Property �a� shows that the nontrivial equilibria
branch intersects the trivial one at the bifurcation point

�0= �̄0
HN, exactly as in the standard SIS model. However, as

shown in Fig. 2, the slope of Y��0� at the intersection can be
negative for sufficiently large �1’s, because
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FIG. 1. Examples of the functions gk,M�y� for k=5.
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FIG. 2. �Color online�. The nontrivial equilibria y=Y��0� of the

HN and SFN mean-field models �1� and �3�, for M =1, k̄=12, and
�1 set to 1 �a�, 1.25 �b�, and 1.5 �c�. Solid �dashed� curves denote
stable �unstable� equilibria and have been numerically obtained by
continuation �26�. For the SFN model we used a number
n=kmax−kmin+1=600 of node degrees, which is consistent with a
finite-size network of N��n /kmin�2=104 nodes �3�. As for the sto-
chastic simulations, at each value of �0 we simulated the epidemio-
logical process over a time horizon of 3
104 steps ��=10−2� start-
ing from two different network states, i.e., by randomly infecting 2
and 40 % of nodes. In circles are the averages over the last 104

steps.
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and g
k̄,M
� �0��0 for all k̄, M �see again Fig. 1�. The negative

slope at the intersection and property �b� imply the existence
of a limit point occurring at another parameter threshold

�0= �̃0
HN��̄0

HN, where a saddle-node bifurcation occurs. To
summarize the general behavior of the epidemiological pro-

cess over a HN, we find that if �0��̃0
HN the disease cannot

persist; if �0��̄0
HN there is a unique stable high endemic

equilibrium, and if �̃0
HN��0��̄0

HN the disease can persist or
not depending upon initial conditions.

In contrast to HNs, the SFNs are characterized by a
heterogeneous degree distribution which takes the form
pk�k−� when N �thus kmax� tends to infinity and can be cre-
ated with the Barabási-Albert algorithm of preferential at-

tachment �27� yielding for large N’s to �=3, k̄=2kmin, and a
degree distribution pk=2kmin�kmin+1� / �k�k+1��k+2�� �e.g.,
Ref. �28��. Analogously to Refs. �1,2�, we describe the mean-
field behavior of the epidemic process in a SFN by the fol-
lowing set of n=kmax−kmin+1 equations:

ẏk = − �yk + ��0 + �1y��1 − yk�gk,M�ỹ� , �3�

where 0�yk�1 is the fraction of infected nodes at time t
among those with degree k, y=�k=kmin

kmax pkyk is the current dis-

ease prevalence, and ỹ=�k=kmin

kmax kpkyk / k̄ is the expected pro-
portion of infectives at time t among the neighbors of a node,

because kpk / k̄=qk is the degree distribution of the neighbors
�e.g., Ref. �29��. The epidemiological scenario emerging
from the analysis of the SFN model �3� has some significant
differences with respect to that seen in HNs. The major simi-
larity between the two is in that, despite model �3� is a high-
dimensional system, its qualitative asymptotic behavior can-
not be other than stationary �i.e., convergence to equilibria�.
In fact, the off-diagonal entries of the Jacobian matrix are
given by

� ẏk

�yh
= �1 − yk���1phgk,M�ỹ� +

��0 + �1y�gk,M� �ỹ�hph

k̄
	

and are strictly positive for all 0�yk�1. Thus, system �3� is
monotone and irreducible. Given that the domain �0,1�n is
invariant, this implies that �almost� all trajectories converge
to an equilibrium state �30�. The equilibria Yk of model �3�
are the solutions of the n equations

Yk =
��0 + �1Y�gk,M�Ỹ�

� + ��0 + �1Y�gk,M�Ỹ�
, k = kmin, . . . ,kmax.

Using the above definitions of y and ỹ, we obtain the follow-
ing pair of algebraic equations that must be nullified with

respect to the unknowns Y , Ỹ:

F1�Y,Ỹ� = Y − �
k=kmin

kmax

pk
��0 + �1Y�gk,M�Ỹ�

� + ��0 + �1Y�gk,M�Ỹ�
,

F2�Y,Ỹ� = Ỹ −
1

k̄
�

k=kmin

kmax

kpk
��0 + �1Y�gk,M�Ỹ�

� + ��0 + �1Y�gk,M�Ỹ�
. �4�

The trivial solution of Eq. �4� Y = Ỹ =0 has a branching point
at

det��F1/�Y �F1/�Ỹ

�F2/�Y �F2/�Ỹ
	

Y=Ỹ=0

= 1 −
�0

�

k2�

k̄
= 0,

namely, at �0= �̄0
SF=�k̄ / k2���̄0

HN. This threshold is the
same lower bound value that marks the existence of a
�stable� nontrivial solution in the standard SIS process over a
finite SFN �3�. Differently from the outcome of the SIS pro-
cess, however, we notice that model �3� can have nontrivial

solutions also for �0��̄0
SF. This can be numerically verified

by analyzing how the solutions of Eq. �4� vary with respect
to the transmission coefficients �0 and �1, as shown in Fig.
2. Sufficiently large values of �0, no matter the value �1,
guarantee the disease persistence at high endemic levels in
both HNs and SFNs. The most interesting result arises at
intermediate values of �1. Figure 2�b� shows the existence of

a saddle-node bifurcation in both the HN �at �0= �̃0
HN� and

the SFN �at �0= �̃0
SF� models. Decreasing the value attributed

to parameter �0 causes an abrupt transition from a high en-
demic state to extremely low or null prevalences. Notably, in
all the numerical analyses we have performed, it turns out

that �̃0
HN��̃0

SF. In words, this is similar to saying that HNs
can support diseases that would be unable to circulate over
SFNs. The fact that for large values of �1 �see Fig. 2�c�� the

thresholds �̃0
HN, �̃0

SF become negative does not change the
overall picture.

In order to gain deeper insight on the results of Fig. 2, we
performed a bifurcation analysis of models �1� and �3� in the
parameter plane ��0 ,�1�. For any fixed value of �1 above the
cusp point C in Fig. 3, the epidemiological process over a
SFN has two saddle-node bifurcations when �0 is varied.
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FIG. 3. �Color online� The saddle-node bifurcation curves of the
mean-field models �1� and �3�. For transmission parameter values in
regions I and II, SFNs support the coexistence of two stable equi-
libria: the high endemic state and either a low endemic state �region
I� or a totally susceptible population �region II�. Above the HN
curve, model �1� has also two attractors, namely, the high endemic
state and the totally susceptible population. Unspecified parameters
as in Fig. 2.
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They can be recognized in Fig. 2�b�, where the unstable

equilibrium collides respectively with the high ��̃0
SF, branch

SFN1� or the low endemic equilibrium �branch SFN2�. Since
the HN curve of Fig. 3 is systematically placed to the left of

curve SFN1, we find that �̃0
HN��̃0

SF for all fixed values of �1.
One could conjecture that the gap between the two thresh-

olds �̃0
HN and �̃0

SF is due to the finite-size approximation of
the SFN, and that it can vanish as kmax �thus n� becomes
increasingly large. This is not true, though, as it can be

checked by computing �̃0
SF as a function of n over many

orders of magnitude. Figure 4 makes evident that �̃0
SF settles

to a constant positive limit, which is well above �̃0
HN.

The present study contrasts the different abilities of SFNs
and HNs in promoting the spread of epidemics with nonlin-

ear force of infection. At vanishing prevalences, in SFNs the
susceptible nodes with very high degree are able to sustain
the disease by contacting the extremely rare infectives. This
is at the basis of PV’s results �1,2� and is confirmed by our
analysis, since models �1� and �3� reduce to a standard SIS
process when y→0. In contrast, when the prevalence y is
large, the high-degree susceptibles have no disproportionate
advantage in contacting many infectives, because of the satu-
ration effect in the contact process. Also, the many suscep-
tible nodes with ki� k̄ have a lower probability of contacting
an infective node than those of a HN with the same average
degree. What is discussed above is the result of two crucial
ingredients. First is the ability of the epidemic to establish
high prevalences even at low values of �. In our model, this
is obtained by accounting for its dependence on y. Second is
the existence of a saturation effect in the contact process. As
we pointed out, these key features are deeply rooted in a
number of important spreading processes. We also cannot
exclude that, in principle, different epidemiological features
could give rise to the same qualitative picture presented here.
Therefore, we can conclude that it is incorrect to state that
SFNs �or, more in general, highly heterogeneous networks�
are the most efficient media for the propagation of whatever
infection. On the contrary, when analyzing nonelementary
spreading processes, the interplay between the network to-
pology and the infection peculiarities can give rise to unex-
pected outcomes.
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FIG. 4. �Color online� The value of �0 at the saddle-node
bifurcation in both HN and SFN models as a function of
n=kmax−kmin+1. The value n=105 corresponds to a finite-size SFN
of N��n /kmin�2�2.8
108 nodes �3�. Other parameters set to

k̄=2kmin=12, M =1, and �1=1.25.
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